GRID SERVICE DISCOVERY WITH ROUGH SETS
Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
computer science crazy
Super Moderator
******

Posts: 3,048
Joined: Dec 2008
#1
17-09-2009, 10:11 PM


GRID SERVICE DISCOVERY WITH ROUGH SETS
Abstract: A rough set is a formal approximation of a crisp set (conventional set) in terms of a pair of sets which give the lower and the upper approximation of the original set. The lower and upper approximation sets themselves are crisp sets in the standard version of rough set theory, but in other variations, the approximating sets may be fuzzy sets as well. The computational grid is rapidly evolving into a service-oriented computing infrastructure that facilitates resource sharing and large-scale problem solving over the Internet. Service discovery becomes an issue of vital importance in utilizing grid facilities. This paper presents ROSSE, a Rough sets-based search engine for grid service discovery. Building on the Rough sets theory, ROSSE is novel in its capability to deal with the uncertainty of properties when matching services. In this way, ROSSE can discover the services that are most relevant to a service query from a functional point of view. Since functionally matched services may have distinct nonfunctional properties related to the quality of service (QoS), ROSSE introduces a QoS model to further filter matched services with their QoS values to maximize user satisfaction in service discovery.
Use Search at http://topicideas.net/search.php wisely To Get Information About Project Topic and Seminar ideas with report/source code along pdf and ppt presenaion
Reply
project report helper
Active In SP
**

Posts: 2,270
Joined: Sep 2010
#2
02-10-2010, 12:54 PM



.pdf   ITDDM03.pdf (Size: 2.16 MB / Downloads: 79)
Grid Service Discovery with Rough Sets

Maozhen Li, Member, IEEE, Bin Yu, Omer Rana, and Zidong Wang, Senior Member, IEEE



Abstract\

—The computational grid is rapidly evolving into a service-oriented computing infrastructure that facilitates resource sharing
and large-scale problem solving over the Internet. Service discovery becomes an issue of vital importance in utilizing grid facilities. This
paper presents ROSSE, a Rough sets-based search engine for grid service discovery. Building on the Rough sets theory, ROSSE is
novel in its capability to deal with the uncertainty of properties when matching services. In this way, ROSSE can discover the services
that are most relevant to a service query from a functional point of view. Since functionally matched services may have distinct
nonfunctional properties related to the quality of service (QoS), ROSSE introduces a QoS model to further filter matched services with
their QoS values to maximize user satisfaction in service discovery. ROSSE is evaluated from the aspects of accuracy and efficiency in
discovery of computing services

Abstract: A rough set is a formal approximation of a crisp set (conventional set) in terms of a pair of sets which give the lower and the upper approximation of the original set. The lower and upper approximation sets themselves are crisp sets in the standard version of rough set theory, but in other variations, the approximating sets may be fuzzy sets as well. The computational grid is rapidly evolving into a service-oriented computing infrastructure that facilitates resource sharing and large-scale problem solving over the Internet. Service discovery becomes an issue of vital importance in utilizing grid facilities. This paper presents ROSSE, a Rough sets-based search engine for grid service discovery. Building on the Rough sets theory, ROSSE is novel in its capability to deal with the uncertainty of properties when matching services. In this way, ROSSE can discover the services that are most relevant to a service query from a functional point of view. Since functionally matched services may have distinct nonfunctional properties related to the quality of service (QoS), ROSSE introduces a QoS model to further filter matched services with their QoS values to maximize user satisfaction in service discovery.
Technology to use:.NET

Reference: topicideashow-to-grid-service-discovery-with-rough-sets-knowledge-and-data-engineering#ixzz11BMhDpp3
Reply
seminar class
Active In SP
**

Posts: 5,361
Joined: Feb 2011
#3
03-05-2011, 09:20 AM

1 INTRODUCTION
WITH the development of Web service technologies [1],the computational grid [2] is rapidly evolving into aservice-oriented computing infrastructure that facilitatesresource sharing and large-scale problem solving over theInternet [3]. The Open Grid Services Architecture (OGSA)[4], promoted by the Open Grid Forum (OGF, ogf.org) as a standard service-oriented architecture(SOA) for grid applications, has facilitated the evolution. Itis expected that the Web Service Resource Framework(WSRF) [5] will be acting as an enabling technology to drivethis evolution further. The promise of SOA is the enablingof loose coupling, robustness, scalability, extensibility, andinteroperability for large-scale grid systems.As shown in Fig. 1, various resources on the Internetincluding processors, disk storage, network links, instrumentationand visualization devices, domain applications,and software libraries can be exposed as OGSA/WSRFbasedgrid services, which are usually registered with aservice registry. A service bus building on service-orientedgrid middleware technologies such as Globus [6] enablesthe instantiation of grid services. A grid environment mayhost a large number of services. Therefore, service discoverybecomes an issue of vital importance in utilizinggrid facilities.Grid services are implemented as software components,the interfaces of which are used to describe their functionaland nonfunctional properties (attributes). Advertisingservices in a grid environment means that service-associatedproperties are registered with a service registry.Service discovery involves a matching process in which theproperties of a service query are matched with that of aservice advertisement.In a grid environment, service publishers may advertiseservices independently using their predefined properties todescribe services. Therefore, uncertainty of service propertiesexists when matching services. An uncertain property isdefined as a service property that is explicitly used by oneadvertised service but does not appear in another serviceadvertisement that belongs to the same service category.This can be further illustrated using Table 1. For example,property P1, which is explicitly used by service S1 in itsadvertisement, does not appear in the advertisement ofservice S2. Similarly, property P3, which is explicitly usedby service S2, does not appear in the advertisement ofservice S1. When services S1 and S2 are matched with aservice query using properties P1, P2, P3, and P4, propertyP1 becomes an uncertain property in matching service S2,and property P3 becomes an uncertain property in matchingservice S1. Consequently, both S1 and S2 may not bediscovered because of the existence of uncertainty ofproperties even though the two services are relevant tothe query.It is worth noting that properties used in serviceadvertisements may have dependencies, e.g., both P1 andP3 may be dependent properties of P2 when describingservices S1 and S2, respectively. Both S1 and S2 can bediscovered if P1 and P3 (which are uncertain properties interms of the user query) are dynamically identified andreduced in the matching process. To increase the accuracyof service discovery, a search engine should be able to dealwith uncertainty of properties when matching services.In this paper, we present ROSSE [21], [22], [23], [24]: asearch engine for grid service discovery. Building on Roughsets theory [25], ROSSE is novel in its capability to deal withuncertainty of service properties when matching services.This is achieved by dynamically identifying and reducingdependent properties that may be uncertain propertiesZidong.Computer Societywhen matching a service query. In this way, ROSSEincreases the accuracy in service discovery. In addition,functionally matched services may have distinct nonfunctionalproperties related to the quality of service (QoS). Tomaximize user satisfaction in service discovery, ROSSEintroduces a QoS model to further filter matched serviceswith their QoS values. Finally, ROSSE is evaluated from theaspects of accuracy and efficiency in discovery of computingservices.The remainder of the paper is organized as follows:Section 2 presents the design of ROSSE with a focus ondependent property reduction (DPR). Section 3 introduces aQoS model to filter matched services with their QoS values.Section 4 briefly describes the implementation of ROSSEand gives a case study to illustrate the application of ROSSEfor discovery of computing services. Section 5 evaluates theaccuracy and efficiency of ROSSE in service discovery.Section 6 discusses some related work, and Section 7concludes the paper.
2 THE DESIGN OF ROSSEROSSE
considers input and output properties individuallywhen matching services. For the simplicity of expression,input and output properties used in a service query aregenerally referred to as service properties. The same goesfor service advertisements. Fig. 2 shows ROSSE components.The interactions between the components follow twoprocesses—service publication and service discovery.Service publication. Service publishers advertise theirservices to ROSSE through a Web user interface (step 1).Advertised services with WSDL interfaces or OWL-S [13]interfaces are then loaded into the ROSSE Service Repository,in which the elements of services such as the namesand properties of services are registered with ROSSE(step 2). When advertising services, service publishersmay also publish service ontologies that can be defined inOWL [14]. These OWL ontologies are then parsed by anOWL parser (step 3) and loaded into the ROSSE OntologyRepository (step 4). The ontology repository is used by aninference engine to infer the semantic relationships ofproperties when matching services.Service discovery. A user posts a service query to ROSSEvia its Web user interface (step 5). The query includes aservice category of interest and expected service properties.The query is then passed to the Irrelevant PropertyIdentification component (step 6), which accesses the ROSSEService Repository (step 7) to identify and mark theproperties of advertised services that are irrelevant to theproperties used in the service query based on the ontologiesdefined in the ROSSE Ontology Repository (step 8). Thequery is then passed to the DPR component (step 9), whichaccesses the ROSSE Service Repository to identify and markdependent properties (step 10). Upon completion, the DPRcomponent invokes the Service Similarity Computing (SSC)component (step 11), which accesses ROSSE Service Repository(step 12) to compute the match degrees of relevantproperties of advertised services to the service query. Anirrelevant property is given a match degree of zero. The SSCcomponent further computes the similarity degrees ofadvertised services to the service query using the matchdegrees of their individual properties. It should be notedthat dependent properties that may be uncertain propertiesare not involved in the similarity computing process. As aresult, the similarity degrees of advertised services will notbe affected by these uncertain properties. In this way, ROSSEcan discover the services that are most relevant to the servicequery. Up to now, advertised services are matched withtheir functional properties. As functionally matched servicesmay have distinct nonfunctional properties related to QoS,the SSC component invokes the QoS Modeling component(step 13), which in turn filters functionally matched services A layered structure of service-oriented grid systems.TABLE 1Two Service Advertisements with Uncertain Service PropertiesFig. 2. ROSSE components.with QoS values (step 14). Finally, a list of discoveredservices that are ranked with their functionally matcheddegrees is presented to a user (step 16) via the Web userinterface of ROSSE (step 15). Each of the discovered serviceshas a QoS value associated with it.In the following sections, we describe in depth theprocesses involved in service discovery in ROSSE. First, weintroduce Rough sets for service discovery.



download full report

bura.brunel.ac.uk/bitstream/2438/2485/3/Grid%20Service%20Discovery%20with%20Rough%20Sets.pdf
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page

Quick Reply
Message
Type your reply to this message here.


Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  A Three-Phase Grid-Connected Inverter for Photovoltaic Applications Using Fuzzy pdf seminar projects maker 0 423 19-09-2013, 04:47 PM
Last Post: seminar projects maker
  Design of microturbine generator by using matlab Simulink for smart grid study tips 0 792 31-08-2013, 04:42 PM
Last Post: study tips
  Grid Interfacing Inverter of Renewable Energy Sources to Improve the Power pdf study tips 0 388 29-08-2013, 04:55 PM
Last Post: study tips
  Grid-Connected Boost-Half-Bridge Photovoltaic Micro inverter System Abstract study tips 0 423 20-08-2013, 04:51 PM
Last Post: study tips
  A Power System Monitoring Tool based on Grid Computing Report study tips 0 308 12-07-2013, 04:23 PM
Last Post: study tips
  IMPROVING GRID POWER QUALITY WITH FACTS DEVICE ON INTEGRATION OF WIND ENERGY SYSTEM study tips 0 312 29-06-2013, 01:52 PM
Last Post: study tips
  POWER GRID CONTROL SYSTEM USING GSM MODEM ppt study tips 0 606 17-05-2013, 02:50 PM
Last Post: study tips
  Smart Grid Technologies for Autonomous Operation and Control Abstract study tips 0 431 03-05-2013, 02:24 PM
Last Post: study tips
Question information required about smart grid samiii01 0 419 15-04-2013, 12:22 AM
Last Post: samiii01
  COMPACT WIDE BAND ANTENNA FOR SMART GRID APPLICATION REPORT study tips 0 332 28-02-2013, 12:13 PM
Last Post: study tips