Optical packet switch architectures (Download Full Report And Abstract)
Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
computer science crazy
Super Moderator
******

Posts: 3,048
Joined: Dec 2008
#1
22-02-2009, 01:30 AM


1. INTRODUCTION

The growth -of existing and new services will create a large increase of traffic flow in telecommunication network in the coming years .The demand for bandwidth in a communication network increase continuously .The world wide web alone Ëœfor example require a yearly 8 fold increase in bandwidth per user . All optical networks may be the only solution to cope with such increasing bandwidth .In these network transmitter signals remain in optical format on the way from source to destination

The wave length division multiplexing WDM technology offers a practical way to exploit the bandwidth of fiber optics by partitioning the optical bandwidth into separate channels .Photonic packet switching offers high speed ,data rate transparency ,and configurability which are some of the important characteristics needed in future networks supporting different forms of data



2. TYPES OF SWITCHING

There are three main types of switching:
1. Circuit switching
2. Packet switching
3. Cell switching

Circuit Switching :
This type of switching is the one used in the field of conventional telephony . In an end-to-end dedicated link is set up before communication starts. This link is solely used for this communication and after that it is broken .The steps involved in the process of circuit switching are
1. Circuit setup
2. The actual communication
3. Clearing of the circuit

Packet switching:
Here data is sent as packets .Due to this fact, there is an efficient utilization of the communication line. The earlier problem of waiting does not occur here as more than one source can use the line at the same time.

All data to be transmitted is first assembled into one or more messages units called packets, by the source DTE.These packets include both source&destination DTE to its local packets switching exchange (EXE).On receipt of each packets, the exchange first stores the packet and then inspects the destination address it contains . Each PSE containing routing directory specifying the outgoing links to be used for each networkaddress.The PSE forwards the packet on the appropriate link at the maximum available bit rate.

Cell switching:
This is a subset of packet switching. It deals with packets of fixed size, for eg. The ATM cells. It buffers in all the switches follow the FIFO discipline, the packets are delivered in order in the case of cell switching, where as in packet switching the packets may not arrive in order. Cells are 53 bytes long, of which 5 bytes are header and 48 bytes are pay load.

3. PHOTONIC SWITCHING

In photonic switching the signals are kept in optical form, while they are being routed from input to the output. It does not convert optical signals into electrical form for switching purpose. Though the lack of interaction among photons would appear to make photonic switching unrealizable, but fortunately optical non-linearity provides bi-stability, which enables optical switching and promises optical computation also similar to digital computers. In fact optical bi-stability enables switching at energies comparable to electronics. Recently, optically controlled photonic switching devices have been developed, which have the potential for switching rates in tetra hertz range.

Photonic switching has three main advantages:
1. No need for optical to electronic conversions.
2. The ability to route high data rate optical signals.
3. Possibility of three dimensional inter-connections.

Though electronic devices need less power, are more controllable and faster than optical logic devices, they rapidly become slowly in operation by electrical connections between them as a result of cross talk, dispersion, and unwanted capacitance. The photonics would be desirable for long wide band inter-connections.

The main disadvantages of photonic switching are:
1. Large physical size of devices.
2. Absence of all optical clock regenerators to remove the loss and cross talk introduced in cross points
3. The polarization sensitivity of devices

3.1 Functions in a switch :
1. Routing: providing networks connectivity information through routing tables.
2. Forwarding: defining the output for each incoming packet based on routing table.
3. Switching: directing each packet to proper output defined by forwarding process.
4. Buffering: resolving contention by storing packets.

3.2 Photonic packet switches:
A WDM optical packet switch consists of four parts; input interface, switching fabric, output interface and control unit .The input interface is mainly used for packet delineation and alignment, packet header information extraction and packet header removal. The switch fabric is the core of the switch and is used to switch packets optically. The output interface is used to regenerate the optical signals and insert the packet header. The control unit controls the switch using the information in the packet headers. Because of synchronization requirements, optical packet switches are typically designed for fixed size packets.

When a packet arrives at a WDM optical packet switch, it is first processed by the input interface. The header and payload of the packet are separated and the header is converted into the electrical domain and processed by the control unit electronically. The payload remains an optical signal throughout the switch. After the payload passes through the switching fabric, it is recombined with the header, which is converted back into the optical domain at the output interface.


(Download Full Report And Abstract)

Download
Use Search at http://topicideas.net/search.php wisely To Get Information About Project Topic and Seminar ideas with report/source code along pdf and ppt presenaion
Reply
sonu19j
Active In SP
**

Posts: 1
Joined: Mar 2011
#2
24-03-2011, 11:46 PM

please send me all information about this topic
Reply
shvrj
Active In SP
**

Posts: 1
Joined: Oct 2011
#3
15-10-2011, 09:36 AM

hi do allow me to download diz one plz[/font]


Attached Files
.pptx   bsnal.sem.pptx (Size: 77 KB / Downloads: 49)
Reply
punna
Active In SP
**

Posts: 13
Joined: Jan 2012
#4
05-01-2012, 04:12 PM

ABSTRACT


The main scope of this paper is to detect the lost mobiles. Each and every day thousands of mobiles get misplaced or lost, though effective way for the blocking of the lost mobile to prevent unauthorized person from making and receiving the calls has been done by the manufacturers of the mobile with the help of International Mobile Equipment Identifier (IMEI) has been done but however there has been no development or very little progress for the detection of the misplaced mobile phone.

For the detection of lost mobile SNIFFER plays a vital role .The sniffer device has to be designed precisely and size should be reduced for easy mobility for the purpose of detection .The device can be called as a mobile Base station that includes Sniffer Base station, Unidirectional antenna , Tracking software. The sniffer is a small base station that includes transceiver section.It should operate at a frequency which is much different from the frequency of the current cell in which the operation of detection is being carried out. The directional antenna is an important device that is to be designed and used as it plays a major role.

There are certain boundary conditions that have to be qualified for the identification of lost mobile like the power of the mobile should be good enough, the mobile phone should not be in the shadow region but however this method using modern technologies and devices.
Our paper seems to be a bit costlier for initial setup but the cost is gradually reduced when effectively and efficiently utilized for the purpose of detection.

















INTRODUCTION



One of the most interesting things about cell phone is that it is really a radio an extremely sophisticated radio, which uses some band of frequency that has the basic working similar to the ordinary cordless phone. The mobile cellular communication has been appreciated since its birth in the early 70’s and the advancement in the field of VLSI has helped in designing less power, smaller size but efficient transceiver for the purpose of communication.


But however the technology has not yet answered the loss or misplacement of the lost mobile phone which is significantly increasing. In this paper we discuss the problem and the probable solution that could be done. The IMEI number is a unique number that is embedded in the mobile phone the main purpose of which is the blocking of calls that is made by unauthorized person once the mobile is reported as stolen but here we use it effectively for the purpose of detection.



2. ABOUT IMEI :

The GSM MoU’s IMEI (International Mobile Equipment Identity) numbering system is a 15 digit unique code that is used to identify the GSM/DCS/PCS phone. When a phone is switched on, this unique IMEI number is transmitted and checked against a data base of black listed or grey listed phones in the network’s EIR (Equipment ID Register). This EIR determines whether the phone can log on to the network to make and receive calls. To know the IMEI number the *#06# has to be pressed, the number will be displayed in the LCD screen; it is unique to a mobile phone. If the EIR and IMEI number match, the networks can do a number of things.


For example grey list or blacklist a phone:
1. Grey listing will allow the phone to be used, but it can be tracked to see who has it (via the SIM information).
2. Black listing the phone from being used on any network where there is an EIR match.




Attached Files
.doc   Beamed power transmission.doc (Size: 84 KB / Downloads: 49)
Reply
punna
Active In SP
**

Posts: 13
Joined: Jan 2012
#5
05-01-2012, 04:19 PM

ABSTRACT


The main scope of this paper is to detect the lost mobiles. Each and every day thousands of mobiles get misplaced or lost, though effective way for the blocking of the lost mobile to prevent unauthorized person from making and receiving the calls has been done by the manufacturers of the mobile with the help of International Mobile Equipment Identifier (IMEI) has been done but however there has been no development or very little progress for the detection of the misplaced mobile phone.

For the detection of lost mobile SNIFFER plays a vital role .The sniffer device has to be designed precisely and size should be reduced for easy mobility for the purpose of detection .The device can be called as a mobile Base station that includes Sniffer Base station, Unidirectional antenna , Tracking software. The sniffer is a small base station that includes transceiver section.It should operate at a frequency which is much different from the frequency of the current cell in which the operation of detection is being carried out. The directional antenna is an important device that is to be designed and used as it plays a major role.

There are certain boundary conditions that have to be qualified for the identification of lost mobile like the power of the mobile should be good enough, the mobile phone should not be in the shadow region but however this method using modern technologies and devices.
Our paper seems to be a bit costlier for initial setup but the cost is gradually reduced when effectively and efficiently utilized for the purpose of detection.

















INTRODUCTION



One of the most interesting things about cell phone is that it is really a radio an extremely sophisticated radio, which uses some band of frequency that has the basic working similar to the ordinary cordless phone. The mobile cellular communication has been appreciated since its birth in the early 70’s and the advancement in the field of VLSI has helped in designing less power, smaller size but efficient transceiver for the purpose of communication.


But however the technology has not yet answered the loss or misplacement of the lost mobile phone which is significantly increasing. In this paper we discuss the problem and the probable solution that could be done. The IMEI number is a unique number that is embedded in the mobile phone the main purpose of which is the blocking of calls that is made by unauthorized person once the mobile is reported as stolen but here we use it effectively for the purpose of detection.



2. ABOUT IMEI :

The GSM MoU’s IMEI (International Mobile Equipment Identity) numbering system is a 15 digit unique code that is used to identify the GSM/DCS/PCS phone. When a phone is switched on, this unique IMEI number is transmitted and checked against a data base of black listed or grey listed phones in the network’s EIR (Equipment ID Register). This EIR determines whether the phone can log on to the network to make and receive calls. To know the IMEI number the *#06# has to be pressed, the number will be displayed in the LCD screen; it is unique to a mobile phone. If the EIR and IMEI number match, the networks can do a number of things.


For example grey list or blacklist a phone:
1. Grey listing will allow the phone to be used, but it can be tracked to see who has it (via the SIM information).
2. Black listing the phone from being used on any network where there is an EIR match.


Reply
punna
Active In SP
**

Posts: 13
Joined: Jan 2012
#6
05-01-2012, 04:35 PM

IMAGE AUTHENTICATION TECHNIQUES
1. INTRODUCTION

This paper explores the various techniques used to authenticate the visual data recorded by the automatic video surveillance system. Automatic video surveillance systems are used for continuous and effective monitoring and reliable control of remote and dangerous sites. Some practical issues must be taken in to account, in order to take full advantage of the potentiality of VS system. The validity of visual data acquired, processed and possibly stored by the VS system, as a proof in front of a court of law is one of such issues. But visual data can be modified using sophisticated processing tools without leaving any visible trace of the modification. So digital or image data have no value as legal proof, since doubt would always exist that they had been intentionally tampered with to incriminate or exculpate the defendant. Besides, the video data can be created artificially by computerized techniques such as morphing. Therefore the true origin of the data must be indicated to use them as legal proof. By data authentication we mean here a procedure capable of ensuring that data have not been tampered with and of indicating their true origin.

2. AUTOMATIC VISUAL SURVEILLANCE SYSTEM

Automatic Visual Surveillance system is a self monitoring system which consists of a video camera unit, central unit and transmission networks.(figure)

A pool of digital cameras is in charge of frame the scene of interest and sent corresponding video sequence to central unit. The central unit is in charge of analyzing the sequence and generating an alarm whenever a suspicious situation is detected. Central unit also transmits the video sequences to an intervention centre such as security service provider, the police department or a security guard unit. Somewhere in the system the video sequence or some part of it may be stored and when needed the stored sequence can be used as a proof in front of court of law. If the stored digital video sequences have to be legally credible, some means must be envisaged to detect content tampering and reliably trace back to the data origin

3. AUTHENTICATION TECHNIQUES

Authentication techniques are performed on visual data to indicate that the data is not a forgery; they should not damage visual quality of the video data. At the same time, these techniques must indicate the malicious modifications include removal or insertion of certain frames, change of faces of individual, time and background etc. Only a properly authenticated video data has got the value as legal proof. There are two major techniques for authenticating video data. They are as follows

1. Cryptographic Data Authentication

It is a straight forward way to provide video authentication, namely through the joint use of asymmetric key encryption and the digital Hash function.

Cameras calculate a digital summary (digest) of the video by means of hash function. Then they encrypt the digest with their private key, thus obtaining a signed digest which is transmitted to the central unit together with acquired sequences. This digest is used to prove data integrity or to trace back to their origin. Signed digest can only read by using public key of the camera.

2. Watermarking- based authentication

Watermarking data authentication is the modern approach to authenticate visual data by imperceptibly embedding a digital watermark signal on the data.

Digital watermarking is the art and science of embedding copyright information in the original files. The information embedded is called ‘watermarks ‘. Digital watermarks are difficult to remove without noticeably degrading the content and are a covert means in situation where copyright fails to provide robustness.
4. CRYPTOGRAPHY

Mounting concern over the new threats to privacy and security has lead to wide spread adoption of cryptography. Cryptography is the science of transforming documents. It has mainly two functions

• Encryption
• Decryption

The purpose of encryption is to render a document unreadable by all except those who authorize to read it. Cryptographers refer to the content of the original document as plain text. Plain text is converted in to cipher form using an algorithm and a variable or key. The key is a randomly selected string of numbers.

Only after decoding the cipher text using the key the content of the document is revealed to the common people. Encryption schemes are classified in to

1. Symmetric encryption

In which the same key is used to both encode and decode the document.

2. Public key or asymmetric encryption

It requires a pair of keys: one for encrypting the plain text and the other for decrypting the cipher text. A file encrypted with one key of a pair can be decrypted with other key of the same pair.

5. CRYPTOGRAPHIC DATA AUTHENTICATION

To authenticate visual data each video camera is assigned a different public or private key pair, with private key hardwired within the cameras. A document encrypted with the private key of any particular camera can be decrypted with its own public key. This property is used to provide center authentication that is to trace back to the true origin of the data.

Before sending the video sequence to the central unit, cameras calculate a digital summary or digest of the video by means of a proper hash function. The digest is then encrypted with their private key. Encryption is done by considering the digitized value of the brightness of each pixel. Digital signal is a sequence of zeros and ones and it is encrypted with the private key using a proper algorithm. The signed digest thus obtained is then transmitted to the central unit together with the acquired visual sequence.

Later the signal digest is used to prove data integrity or to trace back to their origin. The signed digest is read using the public key of the camera which produce the video and check if it corresponds to the digest derived from the decrypted video content using the same hash function.

Any manipulation of the data will change the calculated image digest derived from the decrypted data. Any discrepancy between the decrypted digest and calculated image digest indicate that the data has been tampered, with identical digest indicates that the data is genuine.

Value of the visual data can be added by tying each frame to the particular label of the instant the frame has been produced yet. This can be achieved by printing date and time of creation of each frame. Any modification of either the date or time could be easily revealed since it would change the locally calculated image digest.

5.1 DRAWBACKS OF CRYPTOGRAPHIC AUTHENTICATION

Even though cryptographic data authentication is highly resistant to content tampering, it suffers from few drawbacks. They are as follows:

1. Knowledge of private key

If the manipulator knows the private key of the camera, he can change the digest to involve the modifications he had made on the actual sequence. But the possibility of such a thing is very small because the private key is hardwired within the camera.


2. Impossible to distinguish between malicious and innocuous modification

It is difficult to distinguish between malicious and innocuous manipulations if cryptography is used. Innocuous modifications include compression of the video sequences. These modifications are usually performed by the central unit whereas digest is calculated on the basis of the uncompressed data by the camera. So on compression the correspondence between the digest and data would be lost.

3. High requirements of video camera

To avoid the above discussed problem, the video camera should perform the compression of the video sequences prior to digest calculation. This requires the video camera to have high computation as storage requirements.

4. Delay in transmission

Digest calculations and encryption introduces a delay in transmission of video documents. This is harmful in system where the timely generation of alarm is critical.

5. Protecting privacy is difficult

A part of the program cannot be removed for privacy reasons since it will alter the calculated digest.

6. WATERMARKING

A digital watermark is a signal that is imperceptibly embedded within digital data. This signal can be detected or extracted by means of computations to make some assertions about the host data.

Digital watermark is a signal which added to a document to authenticate it and to prove the ownership. A commonly encountered digital watermark is the logo most television channels display on the top of the television screen. Not only does it advertise the channel but also provides the legal benefit of having a source signature persist during video recording. Watermark task consists of two main steps

1. Watermark casting:-in which the signal represented by the watermark is transmitted over the channel, that is in watermark casting an encoder function Є takes a host image ‘f’ and a watermark ‘w’ and generate a new image
Fw= Є (f, w)

2. Watermark detection:-in which the signal is received and extracted from possibly corrupted image.

IMAGE AUTHENTICATION TECHNIQUES
1. INTRODUCTION

This paper explores the various techniques used to authenticate the visual data recorded by the automatic video surveillance system. Automatic video surveillance systems are used for continuous and effective monitoring and reliable control of remote and dangerous sites. Some practical issues must be taken in to account, in order to take full advantage of the potentiality of VS system. The validity of visual data acquired, processed and possibly stored by the VS system, as a proof in front of a court of law is one of such issues. But visual data can be modified using sophisticated processing tools without leaving any visible trace of the modification. So digital or image data have no value as legal proof, since doubt would always exist that they had been intentionally tampered with to incriminate or exculpate the defendant. Besides, the video data can be created artificially by computerized techniques such as morphing. Therefore the true origin of the data must be indicated to use them as legal proof. By data authentication we mean here a procedure capable of ensuring that data have not been tampered with and of indicating their true origin.

2. AUTOMATIC VISUAL SURVEILLANCE SYSTEM

Automatic Visual Surveillance system is a self monitoring system which consists of a video camera unit, central unit and transmission networks.(figure)

A pool of digital cameras is in charge of frame the scene of interest and sent corresponding video sequence to central unit. The central unit is in charge of analyzing the sequence and generating an alarm whenever a suspicious situation is detected. Central unit also transmits the video sequences to an intervention centre such as security service provider, the police department or a security guard unit. Somewhere in the system the video sequence or some part of it may be stored and when needed the stored sequence can be used as a proof in front of court of law. If the stored digital video sequences have to be legally credible, some means must be envisaged to detect content tampering and reliably trace back to the data origin

3. AUTHENTICATION TECHNIQUES

Authentication techniques are performed on visual data to indicate that the data is not a forgery; they should not damage visual quality of the video data. At the same time, these techniques must indicate the malicious modifications include removal or insertion of certain frames, change of faces of individual, time and background etc. Only a properly authenticated video data has got the value as legal proof. There are two major techniques for authenticating video data. They are as follows

1. Cryptographic Data Authentication

It is a straight forward way to provide video authentication, namely through the joint use of asymmetric key encryption and the digital Hash function.

Cameras calculate a digital summary (digest) of the video by means of hash function. Then they encrypt the digest with their private key, thus obtaining a signed digest which is transmitted to the central unit together with acquired sequences. This digest is used to prove data integrity or to trace back to their origin. Signed digest can only read by using public key of the camera.

2. Watermarking- based authentication

Watermarking data authentication is the modern approach to authenticate visual data by imperceptibly embedding a digital watermark signal on the data.

Digital watermarking is the art and science of embedding copyright information in the original files. The information embedded is called ‘watermarks ‘. Digital watermarks are difficult to remove without noticeably degrading the content and are a covert means in situation where copyright fails to provide robustness.
4. CRYPTOGRAPHY

Mounting concern over the new threats to privacy and security has lead to wide spread adoption of cryptography. Cryptography is the science of transforming documents. It has mainly two functions

• Encryption
• Decryption

The purpose of encryption is to render a document unreadable by all except those who authorize to read it. Cryptographers refer to the content of the original document as plain text. Plain text is converted in to cipher form using an algorithm and a variable or key. The key is a randomly selected string of numbers.

Only after decoding the cipher text using the key the content of the document is revealed to the common people. Encryption schemes are classified in to

1. Symmetric encryption

In which the same key is used to both encode and decode the document.

2. Public key or asymmetric encryption

It requires a pair of keys: one for encrypting the plain text and the other for decrypting the cipher text. A file encrypted with one key of a pair can be decrypted with other key of the same pair.

5. CRYPTOGRAPHIC DATA AUTHENTICATION

To authenticate visual data each video camera is assigned a different public or private key pair, with private key hardwired within the cameras. A document encrypted with the private key of any particular camera can be decrypted with its own public key. This property is used to provide center authentication that is to trace back to the true origin of the data.

Before sending the video sequence to the central unit, cameras calculate a digital summary or digest of the video by means of a proper hash function. The digest is then encrypted with their private key. Encryption is done by considering the digitized value of the brightness of each pixel. Digital signal is a sequence of zeros and ones and it is encrypted with the private key using a proper algorithm. The signed digest thus obtained is then transmitted to the central unit together with the acquired visual sequence.

Later the signal digest is used to prove data integrity or to trace back to their origin. The signed digest is read using the public key of the camera which produce the video and check if it corresponds to the digest derived from the decrypted video content using the same hash function.

Any manipulation of the data will change the calculated image digest derived from the decrypted data. Any discrepancy between the decrypted digest and calculated image digest indicate that the data has been tampered, with identical digest indicates that the data is genuine.

Value of the visual data can be added by tying each frame to the particular label of the instant the frame has been produced yet. This can be achieved by printing date and time of creation of each frame. Any modification of either the date or time could be easily revealed since it would change the locally calculated image digest.

5.1 DRAWBACKS OF CRYPTOGRAPHIC AUTHENTICATION

Even though cryptographic data authentication is highly resistant to content tampering, it suffers from few drawbacks. They are as follows:

1. Knowledge of private key

If the manipulator knows the private key of the camera, he can change the digest to involve the modifications he had made on the actual sequence. But the possibility of such a thing is very small because the private key is hardwired within the camera.


2. Impossible to distinguish between malicious and innocuous modification

It is difficult to distinguish between malicious and innocuous manipulations if cryptography is used. Innocuous modifications include compression of the video sequences. These modifications are usually performed by the central unit whereas digest is calculated on the basis of the uncompressed data by the camera. So on compression the correspondence between the digest and data would be lost.

3. High requirements of video camera

To avoid the above discussed problem, the video camera should perform the compression of the video sequences prior to digest calculation. This requires the video camera to have high computation as storage requirements.

4. Delay in transmission

Digest calculations and encryption introduces a delay in transmission of video documents. This is harmful in system where the timely generation of alarm is critical.

5. Protecting privacy is difficult

A part of the program cannot be removed for privacy reasons since it will alter the calculated digest.

6. WATERMARKING

A digital watermark is a signal that is imperceptibly embedded within digital data. This signal can be detected or extracted by means of computations to make some assertions about the host data.

Digital watermark is a signal which added to a document to authenticate it and to prove the ownership. A commonly encountered digital watermark is the logo most television channels display on the top of the television screen. Not only does it advertise the channel but also provides the legal benefit of having a source signature persist during video recording. Watermark task consists of two main steps

1. Watermark casting:-in which the signal represented by the watermark is transmitted over the channel, that is in watermark casting an encoder function Є takes a host image ‘f’ and a watermark ‘w’ and generate a new image
Fw= Є (f, w)

2. Watermark detection:-in which the signal is received and extracted from possibly corrupted image.
Reply
punna
Active In SP
**

Posts: 13
Joined: Jan 2012
#7
05-01-2012, 04:42 PM

ntroduction


Users nowadays are provided with major password stereotypes such as textual passwords, biometric scanning, tokens or cards (such as an ATM) etc. Current authentication systems suffer from many weaknesses.
Textual passwords are commonly used; however, users do not follow their requirements. Users tend to choose meaningful words from dictionary or their pet names, girlfriends etc. Ten years back Klein performed such tests and he could crack 10-15 passwords per day. On the other hand, if a password is hard to guess, then it is often hard to remember. Users have difficulty remembering a password that is long and random appearing. So, they create short, simple, and insecure passwords that are susceptible to attack. Which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Graphical passwords schemes have been proposed. The strength of graphical passwords comes from the fact that users can recall and recognize pictures more than words. Most graphical passwords are vulnerable for shoulder surfing attacks, where an attacker can observe or record the legitimate user’s graphical password by camera. Token based systems such as ATMs are widely applied in banking systems and in laboratories entrances as a mean of authentication. However, Smart cards or tokens are vulnerable to loss or theft. Moreover, the user has to carry the token whenever access required. Biometric scanning is your "natural" signature and Cards or Tokens prove your validity. But some people hate the fact to carry around their cards, some refuse to undergo strong IR exposure to their retinas (Biometric scanning).
In this paper, we present and evaluate our contribution, i.e., the 3-D password. The 3-D password is a multifactor authentication scheme. To be authenticated, we present a 3-D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3-D environment constructs the user’s 3-D password. The 3-D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3-D virtual environment. The design of the 3-D virtual environment and the type of objects selected determine the 3-Dpassword key space.

Reference: topicideashow-to-3d-password--14576#ixzz1iX91aDhF
Reply
Guest
Thinking To Register

 
#8
08-08-2012, 11:06 AM

i need an abstract for opitical packet switchSmile
Reply
Guest
Thinking To Register

 
#9
24-08-2013, 07:49 PM

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page

Quick Reply
Message
Type your reply to this message here.


Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  web spoofing full report computer science technology 13 9,012 20-05-2016, 11:59 AM
Last Post: Dhanabhagya
  BRAIN GATE TECHNOLOGY ABSTRACT project girl 1 518 01-04-2016, 11:20 AM
Last Post: mkaasees
  PROGRAMS USING RAW SOCKETS (LIKE PACKET CAPTURING AND FILTERING project girl 2 2,158 30-10-2015, 10:03 AM
Last Post: Guest
  microwind software free download jaseelati 0 287 23-02-2015, 12:47 PM
Last Post: jaseelati
  abstract cybercrime and security paper presentation jaseelati 0 291 13-02-2015, 02:01 PM
Last Post: jaseelati
  secure atm by image processing abstract jaseelati 0 351 23-01-2015, 03:08 PM
Last Post: jaseelati
  smart quill abstract jaseelati 0 332 22-01-2015, 02:08 PM
Last Post: jaseelati
  abstract for voice based email for blinds jaseelati 0 380 21-01-2015, 04:30 PM
Last Post: jaseelati
  security features of atm abstract jaseelati 0 304 17-01-2015, 04:13 PM
Last Post: jaseelati
  credit card fraud detection using hidden markov model project download jaseelati 0 298 10-01-2015, 01:34 PM
Last Post: jaseelati