electromagnetic bomb or E-bomb
Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
mechanical engineering crazy
Active In SP
**

Posts: 226
Joined: Jul 2009
#1
30-08-2009, 12:52 AM



.pdf   electromagnetic bomb or E-bomb.pdf (Size: 402.95 KB / Downloads: 513)
An electromagnetic bomb or E-bomb is a weapon designed to disable electronics with an electromagnetic pulse (EMP) that can couple with electrical/electronic systems to produce damaging current and voltage surges by electromagnetic induction. The effects are usually not noticeable beyond 10 km of the blast radius unless the device is nuclear or specifically designed to produce an electromagnetic pulse. Small nuclear weapons detonated at high altitudes can produce a strong enough signal to disrupt or damage electronics many miles from the focus of the explosion. During a nuclear EMP, the magnetic flux lines of the Earth alter the dispersion of energy so that it radiates very little to the North, but spreads out East, West, and South of the blast. The signal is divided into several time components, and can result in thousands of volts per meter of electromagnetic energy ranging from extreme negative to extreme positive polarities. This energy can travel long distances on power lines and through the air.

for more read this
globalsecuritymilitary/library/report/1996/apjemp.htm
en.wikipediawiki/Electromagnetic_bomb
abovetopsecretpages/ebomb.html
science.howstuffworkse-bomb.htm
images.googleimages?client=opera&rls=en&q=Electromagnetic+Bomb&sourceid=opera&oe=utf-8&um=1&ie=UTF-8&ei=jHyZSvCjEoTU7AOFuYzfBA&sa=X&oi=image_result_group&ct=title&resnum=4
Use Search at http://topicideas.net/search.php wisely To Get Information About Project Topic and Seminar ideas with report/source code along pdf and ppt presenaion
Reply
seminar surveyer
Active In SP
**

Posts: 3,541
Joined: Sep 2010
#2
23-12-2010, 10:52 AM

Prepared by:Bhanu Pratap Behera


.pdf   SEMINAR REPORT ON E BOMB.pdf (Size: 817.67 KB / Downloads: 211)


ABSTRACT
High Power Electromagnetic Pulse generation techniques and High Power Microwave technology have matured to the point where practical E-bombs (Electromagnetic bombs) are becoming technically feasible, with new applications in both Strategic and Tactical Information Warfare. The development of conventional E-bomb devices allows their use in non-nuclear confrontations. This paper discusses aspects of the technology base, weapon delivery techniques and proposes a doctrinal foundation for the use of such devices in warhead and bomb applications.

INTRODUCTION
The prosecution of a successful Information Warfare (IW) campaign against an industrialised or post industrial opponent will require a suitable set of tools. As demonstrated in the Desert Storm air campaign, air power has proven to be a most effective means of inhibiting the functions of an opponent's vital information processing infrastructure. This is because air power allows concurrent or parallel engagement of a large number of targets over geographically significant areas While Desert Storm demonstrated that the application of air power was the most practical means of crushing an opponent's information processing and transmission nodes, the need to physically destroy these with guided munitions absorbed a substantial proportion of available air assets in the early phase of the air campaign. Indeed, the aircraft capable of delivery laser guided bombs were largely occupied with this very target set during the first nights of the air battle. The efficient execution of an IW campaign against a modern industrial or post-industrial opponent will require the use of specialised tools designed to destroy information systems. Electromagnetic bombs built for this purpose can provide, where delivered by suitable means, a very effective tool for this purpose.

The EMP Effect
The ElectroMagnetic Pulse (EMP) effect was first observed during the early testing of high altitude airburst nuclear weapons. The effect is characterised by the production of a very short (hundreds of nanoseconds) but intense electromagnetic pulse, which propagates away from its source with ever diminishing intensity, governed by the theory of electromagnetism. The ElectroMagnetic Pulse is in effect an electromagnetic shock wave. This pulse of energy produces a powerful electromagnetic field, particularly within the vicinity of the weapon burst. The field can be sufficiently strong to produce short lived transient voltages of thousands of Volts (ie kiloVolts) on exposed electrical conductors, such as wires, or conductive tracks on printed circuit boards, where exposed. It is this aspect of the EMP effect which is of military significance, as it can result in irreversible damage to a wide range of electrical and electronic equipment, particularly computers and radio or radar receivers. Subject to the electromagnetic hardness of the electronics, a measure of the equipment's resilience to this effect, and the intensity of the field produced by the weapon, the equipment can be irreversibly damaged or in effect electrically destroyed. The damage inflicted is not unlike that experienced through exposure to close proximity lightning strikes, and may require complete replacement of the equipment, or at least substantial portions thereof. Commercial computer equipment is particularly vulnerable to EMP effects, as it is largely built up of high density Metal Oxide Semiconductor (MOS) devices, which are very sensitive to exposure to high voltage transients. What is significant about MOS devices is that very little energy is required to permanently wound or destroy them, any voltage in typically in excess of tens of Volts can produce an effect termed gate breakdown which effectively destroys the device. Even if the pulse is not powerful enough to produce thermal damage, the power supply in the equipment will readily supply enough energy to complete the destructive process. Wounded devices may still function, but their reliability will be seriously impaired. Shielding electronics by equipment chassis provides only limited protection, as any cables running in and out of the equipment will behave very much like antennae, in effect guiding the high voltage transients into the equipment. Computers used in data processing systems, communications systems, displays, industrial control applications, including road and rail signalling, and those embedded in military equipment, such as signal processors, electronic flight controls and digital engine control systems, are all potentially vulnerable to the EMP effect. Other electronic devices and electrical equipment may also be destroyed by the EMP effect. Telecommunications equipment can be highly vulnerable, due to the presence of lengthy copper cables between devices. Receivers of all varieties are particularly sensitive to EMP, as the highly sensitive miniature high frequency transistors and diodes in such equipment are easily destroyed by exposure to high voltage electrical transients. Therefore radar and electronic warfare equipment, satellite, microwave, UHF, VHF, HF and low band communications equipment and television equipment are all potentially vulnerable to the EMP effect. It is significant that modern military platforms are densely packed with electronic equipment, and unless these platforms are well hardened, an EMP device can substantially reduce their function or render them unusable.

The Technology Base for Conventional Electromagnetic Bombs
The technology base which may be applied to the design of electromagnetic bombs is both diverse, and in many areas quite mature. Key technologies which are extant in the area are explosively pumped Flux Compression Generators (FCG), explosive or propellant driven Magneto-Hydrodynamic (MHD) generators and a range of HPM devices, the foremost of which is the Virtual Cathode Oscillator or Vircator. A wide range of experimental designs have been tested in these technology areas, and a considerable volume of work has been published in unclassified literature. This paper will review the basic principles and attributes of these technologies, in relation to bomb and warhead applications. It is stressed that this treatment is not exhaustive, and is only intended to illustrate how the technology base can be adapted to an operationally deployable capability.

Explosively Pumped Flux Compression Generators
The explosively pumped FCG is the most mature technology applicable to bomb designs. The FCG was first demonstrated by Clarence Fowler at Los Alamos National Laboratories (LANL) in the late fifties [FOWLER60]. Since that time a wide range of FCG configurations has been built and tested, both in the US and the USSR, and more recently CIS. The FCG is a device capable of producing electrical energies of tens of MegaJoules in tens to hundreds of microseconds of time, in a relatively compact package. With peak power levels of the order of TeraWatts to tens of TeraWatts, FCGs may be used directly, or as one shot pulse power supplies for microwave tubes. To place this in perspective, the current produced by a large FCG is between ten to a thousand times greater than that produced by a typical lightning stroke [WHITE78]. The central idea behind the construction of FCGs is that of using a fast explosive to rapidly compress a magnetic field, transferring much energy from the explosive into the magnetic field. The initial magnetic field in the FCG prior to explosive initiation is produced by a start current. The start current is supplied by an external source, such a a high voltage capacitor bank (Marx bank), a smaller FCG or an MHD device. In principle, any device capable of producing a pulse of electrical current of the order of tens of kiloAmperes to MegaAmperes will be suitable. A number of geometrical configurations for FCGs have been published (for examples see REINOVSKY85, CAIRD85, FOWLER89) The most commonly used arrangement is that of the coaxial FCG. The coaxial arrangement is of particular interest in this context, as its essentially cylindrical form factor lends itself to packaging into munitions.

Explosive and Propellant Driven MHD Generators
The design of explosive and propellant driven Magneto-Hydrodynamic generators is a much less mature art that that of FCG design. Technical issues such as the size and weight of magnetic field generating devices required for the operation of MHD generators suggest that MHD devices will play a minor role in the near term. In the context of this paper, their potential lies in areas such as start current generation for FCG devices. The fundamental principle behind the design of MHD devices is that a conductor moving through a magnetic field will produce an electrical current transverse to the direction of the field and the conductor motion. In an explosive or propellant driven MHD device, the conductor is a plasma of ionised explosive or propellant gas, which travels through the magnetic field. Current is collected by electrodes which are in contact with the plasma jet [FANTHOME89]. The electrical properties of the plasma are optimised by seeding the explosive or propellant with with suitable additives, which ionise during the burn [FANTHOME89, FLANAGAN81]. Published experiments suggest that a typical arrangement uses a solid propellant gas generator, often using conventional ammunition propellant as a base. Cartridges of such propellant can be loaded much like artillery rounds, for multiple shot operation.

High Power Microwave Sources - The Vircator
Whilst FCGs are potent technology base for the generation of large electrical power pulses, the output of the FCG is by its basic physics constrained to the frequency band below 1 MHz. Many target sets will be difficult to attack even with very high power levels at such frequencies, moreover focussing the energy output from such a device will be problematic. A HPM device overcomes both of the problems, as its output power may be tightly focussed and it has a much better ability to couple energy into many target types. A wide range of HPM devices exist. Relativistic Klystrons, Magnetrons, Slow Wave Devices, Reflex triodes, Spark Gap Devices and Vircators are all examples of the available technology base [GRANATSTEIN87, HOEBERLING92]. From the perspective of a bomb or warhead designer, the device of choice will be at this time the Vircator, or in the nearer term a Spark Gap source. The Vircator is of interest because it is a one shot device capable of producing a very powerful single pulse of radiation, yet it is mechanically simple, small and robust, and can operate over a relatively broad band of microwave frequencies. The physics of the Vircator tube are substantially more complex than those of the preceding devices. The fundamental idea behind the Vircator is that of accelerating a high current electron beam against a mesh (or foil) anode. Many electrons will pass through the anode, forming a bubble of space charge behind the anode. Under the proper conditions, this space charge region will oscillate at microwave frequencies. If the space charge region
is placed into a resonant cavity which is appropriately tuned, very high peak powers may be achieved. Conventional microwave engineering techniques may then be used to extract microwave power from the resonant cavity. Because the frequency of oscillation is dependent upon the electron beam parameters, Vircators may be tuned or chirped in frequency, where the microwave cavity will support appropriate modes. Power levels achieved in Vircator experiments range from 170 kiloWatts to 40 GigaWatts over frequencies spanning the decimetric and centimetric bands [THODE87].


Reply
project topics
Active In SP
**

Posts: 2,492
Joined: Mar 2010
#3
04-04-2011, 10:51 AM

i suggest you must read following threads for getting more idea about the topic electromagnetic bomb or Ebomb
topicideashow-to-e-bomb-download-full-report-and-abstract
topicideashow-to-e-bomb-seminar and presentation-report
topicideashow-to-electromagnetic-bomb-or-e-bomb
topicideashow-to-smart-bombs--2135
topicideashow-to-electromagnetic-bomb
Use Search at http://topicideas.net/search.php wisely To Get Information About Project Topic and Seminar ideas with report/source code along pdf and ppt presenaion
Reply
seminar class
Active In SP
**

Posts: 5,361
Joined: Feb 2011
#4
04-04-2011, 04:57 PM

PRESENTED BY:
RAHUL K. SHINGANE
VINIT V. BHAVTHAKNAR
NADEEM H. KHAN


.doc   e-bomb total report.doc (Size: 51 KB / Downloads: 71)
1. INTRODUCTION
An electromagnetic bomb, or e-bomb, is a weapon designed to take advantage of this dependency. But instead of simply cutting off power in an area, an e-bomb would actually destroy most machines that use electricity. Generators would be useless, cars wouldn't run, and there would be no chance of making a phone call. In a matter of seconds, a big enough e-bomb could thrust an entire city back 200 years or cripple a military unit.
2 .BASIC PRINCIPLE-THE EMP EFFECT
The Electromagnetic Pulse (EMP) effect was first observed during the early testing of high altitude airburst nuclear weapons. The effect is characterised by the production of a very short (hundreds of nanoseconds) but intense electromagnetic pulse, which propagates away from its source with ever diminishing intensity, governed by the theory of electromagnetism. The Electromagnetic Pulse is in effect an electromagnetic shock wave.
This pulse of energy produces a powerful electromagnetic field, particularly within the vicinity of the weapon burst. The field can be sufficiently strong to produce short lived transient voltages of thousands of Volts (i.e. kilovolts) on exposed electrical conductors, such as wires, or conductive tracks on printed circuit boards, where exposed.
3. THE TECHNOLOGY BASE FOR CONVENTIONAL E BOMBS
The technology base which may be applied to the design of electromagnetic bombs is both diverse, and in many areas quite mature. Key technologies which are extant in the area are explosively pumped Flux Compression Generators (FCG), explosive or propellant driven Magneto-Hydrodynamic (MHD) generators and a range of HPM devices, the foremost of which is the Virtual Cathode Oscillator or Vircator.
3.1. EXPLOSIVELY PUMPED FLUX COMPRESSION
GENERATORS

The FCG is a device capable of producing electrical energies of tens of Mega Joules in tens to hundreds of microseconds of time, in a relatively compact package. With peak power levels of the order of Terawatts to tens of Terawatts, FCGs may be used directly, or as one shot pulse power supplies for microwave tubes. To place this in perspective, the current produced by a large FCG is between ten to a thousand times greater than that produced by a typical lightning stroke
The central idea behind the construction of FCGs is that of using a fast explosive to rapidly compress a magnetic field, transferring much energy from the explosive into the magnetic field.
The initial magnetic field in the FCG prior to explosive initiation is produced by a start current. The start current is supplied by an external source, such a high voltage capacitor bank (Marx bank), a smaller FCG or an MHD device. In principle, any device capable of producing a pulse of electrical current of the order of tens of Kilo Amperes to Mega Amperes will be suitable.
A number of geometrical configurations for FCGs have been published .The most commonly used arrangement is that of the coaxial FCG. The coaxial arrangement is of particular interest in this context, as its essentially cylindrical form factor lends itself to packaging into munitions.
3.2. EXPLOSIVE AND PROPELLANT DRIVEN MHD GENERATORS
The design of explosive and propellant driven Magneto-Hydrodynamic generators is a much less mature art that that of FCG design.
The fundamental principle behind the design of MHD devices is that a conductor moving through a magnetic field will produce an electrical current transverse to the direction of the field and the conductor motion. In an explosive or propellant driven MHD device, the conductor is plasma of ionized explosive or propellant gas, which travels through the magnetic field. Current is collected by electrodes which are in contact with the plasma jet.
4. TARGETING E-BOMBS
The task of identifying targets for attack with electromagnetic bombs can be complex. Certain categories of target will be very easy to identify and engage. Buildings housing government offices and thus computer equipment, production facilities, military bases and known radar sites and communications nodes are all targets which can be readily identified through conventional photographic, satellite, imaging radar, electronic reconnaissance and humint operations. These targets are typically geographically fixed and thus may be attacked providing that the aircraft can penetrate to weapon release range. With the accuracy inherent in GPS/inertially guided weapons, the electromagnetic bomb can be programmed to detonate at the optimal position to inflict a maximum of electrical damage.
Mobile and camouflaged targets which radiate overtly can also be readily engaged. Mobile and re locatable air defence equipment, mobile communications nodes and naval vessels are all good examples of this category of target. While radiating, their positions can be precisely tracked with suitable Electronic Support Measures (ESM) and Emitter Locating Systems (ELS) carried either by the launch platform or a remote surveillance platform. In the latter instance target coordinates can be continuously data linked to the launch platform. As most such targets move relatively slowly, they are unlikely to escape the footprint of the electromagnetic bomb during the weapon's flight time.
5. DELIVERY OF CONVENTIONAL E BOMBS
An “E-Bomb” is delivered by cruise missile. It can be fired from a long range 155mm artillery gun or MLRS rocket launcher, then its outer casing breaks open over the target. The shell or rocket unfolds its radio transmitter aerials, and then the transmitter sends a high powered radio pulse of billions of watts that lasts just a few nanoseconds.
6. DEFENCE AGAINST E BOMBS
The most effective defence against electromagnetic bombs is to prevent their delivery by destroying the launch platform or delivery vehicle, as is the case with nuclear weapons. This however may not always be possible, and therefore systems which can be expected to suffer exposure to the electromagnetic weapons effects must be electromagnetically hardened.
The most effective method is to wholly contain the equipment in an electrically conductive enclosure, termed a Faraday cage, which prevents the electromagnetic field from gaining access to the protected equipment. However, most such equipment must communicate with and be fed with power from the outside world, and this can provide entry points via which electrical transients may enter the enclosure and effect damage. While optical fibers address this requirement for transferring data in and out, electrical power feeds remain an ongoing vulnerability.
7. EFFECTS OF E BOMB
The United States is drawn to EMP technology because it is potentially non-lethal, but is still highly destructive. An E-bomb attack would leave buildings standing and spare lives, but it could destroy a sizeable military.
There is a range of possible attack scenarios. Low-level electromagnetic pulses would temporarily jam electronics systems, more intense pulses would corrupt important computer data and very powerful bursts would completely fry electric and electronic equipment.
In modern warfare, the various levels of attack could accomplish a number of important combat missions without racking up many casualties. For example, an e-bomb could effectively neutralize:
• vehicle control systems
• targeting systems, on the ground and on missiles and bombs
• communications systems
• navigation systems
• long and short-range sensor systems
EMP weapons could be especially useful in an invasion of Iraq, because a pulse might effectively neutralize underground bunkers. Most of Iraq's underground bunkers are hard to reach with conventional bombs and missiles. A nuclear blast could effectively demolish many of these bunkers, but this would take a devastating toll on surrounding areas. An electromagnetic pulse could pass through the ground, knocking out the bunker's lights, ventilation systems, communications -- even electric doors. The bunker would be completely uninhabitable.
Reply
seminar flower
Super Moderator
******

Posts: 10,120
Joined: Apr 2012
#5
23-07-2012, 05:10 PM

Electromagnetic Bomb

.doc   Electromagnetic Bomb.doc (Size: 412.5 KB / Downloads: 26)

. INTRODUCTION

An e-bomb, or e-bomb, is a weapon designed to take advantage of this dependency. But instead of simply cutting off power in an area, an e-bomb would actually destroy most machines that use electricity. Generators would be useless, cars wouldn't run, and there would be no chance of making a phone call. In a matter of seconds, a big enough e-bomb could thrust an entire city back 200 years or cripple a military unit.
At low level, the pulse temporarily disable electronic systems; mid-range level corrupt computer data.
At high level completely destroy electronic ckts. Thus disabling any type of machine that uses electricity, including computer, radios, and any ignition systems in vehicles. Although not directly lethal, an e-bomb would devastate any target that relies upon electricity: a category encompassing any potential military target and most civilian area of world as well.
The effect is usually not noticeable beyond 10 km of the blast radius unless the device is nuclear or specification designed to produce an electromagnetic pulse. Small nuclear weapons detonated at high altitude can produce a strong enough signal to disrupt or damage electronics many miles from the locus of the explosion. During a nuclear EMP, HE magnetic flux lines of the earth alter the dispersion of energy so thtat it radiates very little to the north, but spreads out East, West, and South of the blast. The signal is divided into several time components, and can result in thousands of volts per meter of electromagnetic energy.

The Basic Idea:

The basic idea of an e-bomb or more broadly, an electron magnetic pulse (EMP) weapon is pretty simple. These sorts of weapons are designed to overwhelm electrical circuitry with an intense electromagnetic field.
If we read how radio works, then we know an electromagnetic field in itself is nothing special. The radio signals that transmit AM, FM, television and cell phone calls are all electromagnetic energy, as is ordinary light, microwaves and x-rays.
For our purpose, the most important thingh to understand about electromagnetism is that electric current generates magnetic fields can induce electric current. This page form how radio work explain that a simple radio transmitter generates a magnetic field, in turn, can induce an electrical current in another conductor, such as a radio receiver antenna. If the fluctuating electrical signal represents particular information, the receiver can decode it.

THE TECHNOLOGY BASE FOR CONVENTIONAL ELECTROMAGNETIC BOMBS

The technology base which may be applied to the design of electromagnetic bombs is both diverse, and in many areas quite mature. Key technologies which are extant in the area are explosively pumped Flux Compression Generators (FCG), explosive or propellant driven Magneto-Hydrodynamic (MHD) generators and a range of HPM devices, the foremost of which is the Virtual Cathode Oscillator or Vircator. A wide range of experimental designs have been tested in these technology areas, and a considerable volume of work has been published in unclassified literature.

EXPLOSIVELY PUMPED FLUX COMPRESSION GENERATORS

The explosively pumped FCG is the most mature technology applicable to bomb designs. The FCG was first demonstrated by Clarence Fowler at Los Alamos National Laboratories (LANL) in the fifties.
The FCG is a device capable of producing electrical energies of tens of Mega Joules in tens to hundreds of microseconds of time, in a relatively compact package. With peak power levels of the order of Terawatts to tens of Terawatts, FCGs may be used directly, or as one shot pulse power supplies for microwave tubes. To place this in perspective, the current produced by a large FCG is between ten to a thousand times greater than that produced by a typical lightning stroke.
The central idea behind the construction of FCGs is that of using a fast explosive to rapidly compress a magnetic field, transferring much energy from the explosive into the magnetic field.
The initial magnetic field in the FCG prior to explosive initiation is produced by a start current. The start current is supplied by an external source, such a high voltage capacitor bank (Marx bank), a smaller FCG or an MHD device. In principle, any device capable of producing a pulse of electrical current of the order of tens of Kilo Amperes to Mega Amperes will be suitable.

The nucler EMP Threat:-

Researchers concluded that the electrical disturbance was due to the Compton effect, theorized by physicist Arthur Compton in 1925. Compton's assertion was that photons of electromagnetic energy could knock loose electrons from atoms with low atomic numbers. In the 1958 test, researchers concluded, the photons from the blast's intense gamma radiation knocked a large number of electrons free from oxygen and nitrogen atoms in the atmosphere. This flood of electrons interacted with the Earth's magnetic field to create a fluctuating electric current, which induced a powerful magnetic field. The resulting electromagnetic pulse induced intense electrical currents in conductive materials over a wide area.
Reply

Important Note..!

If you are not satisfied with above reply ,..Please

ASK HERE

So that we will collect data for you and will made reply to the request....OR try below "QUICK REPLY" box to add a reply to this page

Quick Reply
Message
Type your reply to this message here.


Image Verification
Please enter the text contained within the image into the text box below it. This process is used to prevent automated spam bots.
Image Verification
(case insensitive)

Possibly Related Threads...
Thread Author Replies Views Last Post
  frictionless electromagnetic braking system jaseelati 0 212 30-01-2015, 02:52 PM
Last Post: jaseelati
  electromagnetic clutch ppt jaseelati 0 214 13-12-2014, 02:54 PM
Last Post: jaseelati
  MOTIONLESS ELECTROMAGNETIC GENERATOR computer science technology 17 13,951 20-09-2013, 09:53 AM
Last Post: seminar projects maker
  The E-bomb - A Weapon of Electrical Mass Destruction ppt study tips 0 435 05-07-2013, 03:39 PM
Last Post: study tips
  Production of Electromagnetic Waves seminar ideas 1 890 26-12-2012, 03:13 PM
Last Post: project girl
  Report on ELECTROMAGNETIC WAVE project girl 0 368 12-12-2012, 03:03 PM
Last Post: project girl
  High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices project girl 0 422 28-11-2012, 02:24 PM
Last Post: project girl
  Electromagnetic Waves ppt project girl 0 436 08-11-2012, 04:47 PM
Last Post: project girl
  ELECTROMAGNETIC INDUCTION and AC CIRCUITS seminar tips 0 449 31-10-2012, 03:32 PM
Last Post: seminar tips
  Electromagnetic Fields & Waves ppt seminar flower 0 577 24-08-2012, 12:01 PM
Last Post: seminar flower